主講老師: | 傅一航 | |
課時(shí)安排: | 1天/6小時(shí) | |
學(xué)習(xí)費(fèi)用: | 面議 | |
課程預(yù)約: | 隋老師 (微信同號) | |
課程簡介: | 本課程的主要目的是,幫助學(xué)員掌握一些業(yè)務(wù)專題挖掘模型,幫助學(xué)員建立對復(fù)雜業(yè)務(wù)問題的數(shù)據(jù)挖掘綜合能力。 | |
內(nèi)訓(xùn)課程分類: | 綜合管理 | 人力資源 | 市場營銷 | 財(cái)務(wù)稅務(wù) | 基層管理 | 中層管理 | 領(lǐng)導(dǎo)力 | 管理溝通 | 薪酬績效 | 企業(yè)文化 | 團(tuán)隊(duì)管理 | 行政辦公 | 公司治理 | 股權(quán)激勵(lì) | 生產(chǎn)管理 | 采購物流 | 項(xiàng)目管理 | 安全管理 | 質(zhì)量管理 | 員工管理 | 班組管理 | 職業(yè)技能 | 互聯(lián)網(wǎng)+ | 新媒體 | TTT培訓(xùn) | 禮儀服務(wù) | 商務(wù)談判 | 演講培訓(xùn) | 宏觀經(jīng)濟(jì) | 趨勢發(fā)展 | 金融資本 | 商業(yè)模式 | 戰(zhàn)略運(yùn)營 | 法律風(fēng)險(xiǎn) | 沙盤模擬 | 國企改革 | 鄉(xiāng)村振興 | 黨建培訓(xùn) | 保險(xiǎn)培訓(xùn) | 銀行培訓(xùn) | 電信領(lǐng)域 | 房地產(chǎn) | 國學(xué)智慧 | 心理學(xué) | 情緒管理 | 時(shí)間管理 | 目標(biāo)管理 | 客戶管理 | 店長培訓(xùn) | 新能源 | 數(shù)字化轉(zhuǎn)型 | 工業(yè)4.0 | 電力行業(yè) | | |
更新時(shí)間: | 2023-09-01 11:44 |
【課程目標(biāo)】
本課程為高階課程,面向所有業(yè)務(wù)支撐部門及數(shù)據(jù)分析部門。
本課程的主要目的是,幫助學(xué)員掌握一些業(yè)務(wù)專題挖掘模型,幫助學(xué)員建立對復(fù)雜業(yè)務(wù)問題的數(shù)據(jù)挖掘綜合能力。
本課程具體內(nèi)容包括:
1、 數(shù)據(jù)挖掘流程,數(shù)據(jù)預(yù)處理
2、 用戶專題分析:用戶群劃分/客戶價(jià)值評估/客戶偏好分析/用戶行為預(yù)測
3、 產(chǎn)品專題分析:產(chǎn)品設(shè)計(jì)優(yōu)化、產(chǎn)品功能評估、產(chǎn)品最優(yōu)定價(jià)策略
4、 精準(zhǔn)推薦算法:協(xié)同過濾、關(guān)聯(lián)分析、基于內(nèi)容/用戶的推薦(CBR/UBR)
5、 金融風(fēng)險(xiǎn)評估:信用評分卡模型、風(fēng)險(xiǎn)預(yù)測模型
本系列課程從實(shí)際的業(yè)務(wù)需求出發(fā),結(jié)合行業(yè)的典型應(yīng)用特點(diǎn),圍繞實(shí)際的商業(yè)問題,對數(shù)據(jù)預(yù)測建模的過程進(jìn)行了全面的介紹(從模型選擇,到特征選擇,再到訓(xùn)練模型,評估模型,以及優(yōu)化模型和模型解讀),通過大量的操作演練,幫助學(xué)員掌握數(shù)據(jù)建模的思路、方法、技巧,以提升學(xué)員的數(shù)據(jù)建模的能力,支撐運(yùn)營決策的目的。
通過本課程的學(xué)習(xí),達(dá)到如下目的:
1、 熟悉數(shù)據(jù)挖掘的標(biāo)準(zhǔn)過程,熟悉每個(gè)步驟的具體操作。
2、 掌握數(shù)據(jù)預(yù)處理的任務(wù),熟練使用SPSS工具完成預(yù)處理。
3、 熟練掌握常用的業(yè)務(wù)專題分析模型:
a) 學(xué)會做市場客戶細(xì)分,劃分客戶群
b) 學(xué)會實(shí)現(xiàn)客戶價(jià)值評估
c) 學(xué)會產(chǎn)品功能設(shè)計(jì)與新產(chǎn)品銷量預(yù)測
d) 熟悉產(chǎn)品定價(jià)策略,尋找產(chǎn)品最優(yōu)定價(jià)
e) 熟悉精準(zhǔn)推薦策略,學(xué)會精準(zhǔn)推薦產(chǎn)品
f) 掌握信用評分卡的模型構(gòu)建
【授課時(shí)間】
2-3天時(shí)間(每天6個(gè)小時(shí))
【授課對象】
業(yè)務(wù)支撐部、運(yùn)營分析部、數(shù)據(jù)分析部、大數(shù)據(jù)系統(tǒng)開發(fā)部等對業(yè)務(wù)數(shù)據(jù)分析有較高要求的相關(guān)人員。
【學(xué)員要求】
1、 每個(gè)學(xué)員自備一臺便攜機(jī)(必須)。
2、 便攜機(jī)中事先安裝好Microsoft Office Excel 2013版本及以上。
3、 便攜機(jī)中事先安裝好IBM SPSS Statistics v24版本及以上。
注:講師可以提供試用版本軟件及分析數(shù)據(jù)源。
【授課方式】
數(shù)據(jù)分析基礎(chǔ) + 方法講解 + 實(shí)際業(yè)務(wù)問題分析 + 工具實(shí)踐操作
采用互動式教學(xué),圍繞業(yè)務(wù)問題,展開數(shù)據(jù)分析過程,全過程演練操作,讓學(xué)員在分析、分享、講授、總結(jié)、自我實(shí)踐過程中獲得能力提升。
【課程大綱】
1、 數(shù)據(jù)挖掘概述
2、 數(shù)據(jù)挖掘的標(biāo)準(zhǔn)流程(CRISP-DM)
? 商業(yè)理解
? 數(shù)據(jù)準(zhǔn)備
? 數(shù)據(jù)理解
? 模型建立
? 模型評估
? 模型應(yīng)用
案例:客戶流失預(yù)測及客戶挽留
3、 數(shù)據(jù)集概述
4、 SPSS工具介紹
5、 數(shù)據(jù)挖掘常用模型
如何整理數(shù)據(jù),了解數(shù)據(jù),對數(shù)據(jù)進(jìn)行預(yù)處理?
1、 數(shù)據(jù)預(yù)處理的四大任務(wù)
? 數(shù)據(jù)集成:多個(gè)數(shù)據(jù)集合并
? 數(shù)據(jù)清洗:異常值的處理
? 樣本處理:樣本篩選、樣本抽樣、樣本平衡
? 變量處理:變量變換、變量派生、變量精簡
2、 數(shù)據(jù)集成(數(shù)據(jù)集合并)
? 樣本追加(添加數(shù)據(jù)行):橫向合并
? 變量合并(添加變量列):縱向合并
3、 數(shù)據(jù)清洗(異常數(shù)據(jù)處理)
? 取值范圍限定
? 重復(fù)值處理
? 無效值/錯(cuò)誤值處理
? 缺失值處理
? 離群值/極端值處理
? 數(shù)據(jù)質(zhì)量評估
4、 樣本處理:行處理
? 樣本篩選:指定條件篩選指定樣本集(減少樣本數(shù)量)
? 樣本抽樣:隨機(jī)抽取部分樣本集(減少樣本數(shù)量)
? 樣本平衡:正反樣本比例均衡
5、 變量處理:列處理
? 變量變換:原變量取值更新,比如標(biāo)準(zhǔn)化
? 變量派生:根據(jù)舊變量生成新的變量
? 變量精簡:變量刪除/降維,減少變量個(gè)數(shù)
? 類型轉(zhuǎn)換:數(shù)據(jù)類型的相互轉(zhuǎn)換
6、 變量精簡/變量降維常用方法
? 常用降維方法
? 如何確定降維后變量個(gè)數(shù)
? 特征選擇:選擇重要變量,剔除不重要變量
2 基于變量本身特征來選擇屬性
2 基于數(shù)據(jù)間的相關(guān)性來選擇屬性
2 利用IV值篩選
2 基于信息增益來選擇屬性
? 因子合并:將多個(gè)變量進(jìn)行合并
2 PCA主成分分析
2 判別分析
7、 類型轉(zhuǎn)換
8、 因子合并/主成分分析
? 因子分析的原因
? 因子個(gè)數(shù)選擇原則
? 如何解讀因子含義
案例:提取影響電信客戶流失的主成分分析
9、 數(shù)據(jù)探索性分析
演練:描述性分析(頻數(shù)、描述、探索、分類匯總)
10、 數(shù)據(jù)可視化
演練:各種圖形繪制
問題:我們的客戶有幾類?各類特征是什么?如何實(shí)現(xiàn)客戶細(xì)分,開發(fā)符合細(xì)分市場的新產(chǎn)品?如何提取客戶特征,從而對產(chǎn)品進(jìn)行市場定位?
1、 市場細(xì)分的常用方法
? 有指導(dǎo)細(xì)分
? 無指導(dǎo)細(xì)分
2、 聚類分析
? 如何更好的了解客戶群體和市場細(xì)分?
? 如何識別客戶群體特征?
? 如何確定客戶要分成多少適當(dāng)?shù)念悇e?
? 聚類方法原理介紹
? 聚類方法作用及其適用場景
? 聚類分析的種類
2 K均值聚類
2 層次聚類
2 兩步聚類
? K均值聚類(快速聚類)
案例:移動三大品牌細(xì)分市場合適嗎?
演練:寶潔公司如何選擇新產(chǎn)品試銷區(qū)域?
演練:如何自動評選優(yōu)秀員工?
演練:中國各省份發(fā)達(dá)程度分析,讓數(shù)據(jù)自動聚類
? 層次聚類(系統(tǒng)聚類):發(fā)現(xiàn)多個(gè)類別
? R型聚類與Q型聚類的區(qū)別
案例:中移動如何實(shí)現(xiàn)客戶細(xì)分及營銷策略
演練:中國省市經(jīng)濟(jì)發(fā)展情況分析(Q型聚類)
演練:裁判評分的標(biāo)準(zhǔn)衡量,避免“黑哨”(R型聚類)
? 兩步聚類
3、 客戶細(xì)分與PCA分析法
? PCA主成分分析的原理
? PCA分析法的適用場景
演練:利用PCA對汽車客戶群進(jìn)行細(xì)分
演練:如何針對汽車客戶群設(shè)計(jì)汽車
營銷問題:如何評估客戶的價(jià)值?不同的價(jià)值客戶有何區(qū)別對待?
1、 如何評價(jià)客戶生命周期的價(jià)值
? 貼現(xiàn)率與留存率
? 評估客戶的真實(shí)價(jià)值
? 使用雙向表衡量屬性敏感度
? 變化的邊際利潤
案例:評估營銷行為的合理性
2、 RFM模型(客戶價(jià)值評估)
? RFM模型,更深入了解你的客戶價(jià)值
? RFM模型與市場策略
? RFM模型與活躍度分析
演練:“雙11”淘寶商家如何選擇價(jià)值客戶進(jìn)行促銷
演練:結(jié)合響應(yīng)模型,宜家IKE實(shí)現(xiàn)最大化營銷利潤
案例:重購用戶特征分析
1、 產(chǎn)品專題分析主要任務(wù)
? 產(chǎn)品設(shè)計(jì)分析
? 市場占有分析
? 累計(jì)銷量分析
? 定價(jià)策略分析
2、 產(chǎn)品設(shè)計(jì)優(yōu)化(聯(lián)合分析法)
問題:如何設(shè)計(jì)最優(yōu)的功能特征?
? 評估功能特征的重要性
? 評估功能特征的價(jià)值
案例:產(chǎn)品開發(fā)與設(shè)計(jì)分析
3、 產(chǎn)品評估模型(隨機(jī)效用理論)
? 屬性重要性評估
? 市場占有率評估
? 產(chǎn)品價(jià)格彈性評估
? 評估產(chǎn)品的品牌價(jià)值
? 動態(tài)調(diào)價(jià)(納會均衡價(jià)格)
案例:品牌價(jià)值與價(jià)格敏感度分析
案例:納什均衡價(jià)格
營銷問題:產(chǎn)品如何實(shí)現(xiàn)最優(yōu)定價(jià)?套餐價(jià)格如何確定?采用哪種定價(jià)策略可達(dá)到利潤最大化?
1、 常見的定價(jià)方法
2、 產(chǎn)品定價(jià)的理論依據(jù)
? 需求曲線與利潤最大化
? 如何求解最優(yōu)定價(jià)
案例:產(chǎn)品最優(yōu)定價(jià)求解
3、 如何評估需求曲線
? 價(jià)格彈性
? 曲線方程(線性、乘冪)
4、 如何做產(chǎn)品組合定價(jià)
5、 如何做產(chǎn)品捆綁/套餐定價(jià)
? 最大收益定價(jià)(演進(jìn)規(guī)劃求解)
? 避免價(jià)格反轉(zhuǎn)的套餐定價(jià)
案例:電信公司的寬帶、IPTV、移動電話套餐定價(jià)
6、 非線性定價(jià)原理
? 要理解支付意愿曲線
? 支付意愿曲線與需求曲線的異同
案例:雙重收費(fèi)如何定價(jià)(如會費(fèi)+按次計(jì)費(fèi))
7、 階梯定價(jià)策略
案例:電力公司如何做階梯定價(jià)
8、 數(shù)量折扣定價(jià)策略
案例:如何通過折扣來實(shí)現(xiàn)薄利多銷
9、 定價(jià)策略的評估與選擇
案例:零售公司如何選擇最優(yōu)定價(jià)策略
10、 航空公司的收益管理
? 收益管理介紹
? 如何確定機(jī)票預(yù)訂限制
? 如何確定機(jī)票超售數(shù)量
? 如何評估模型的收益
案例:FBN航空公司如何實(shí)現(xiàn)收益管理(預(yù)訂/超售)
問題:購買A產(chǎn)品的顧客還常常要購買其他什么產(chǎn)品?應(yīng)該給客戶推薦什么產(chǎn)品最有可能被接受?
1、 從搜索引擎到推薦引擎
2、 常用產(chǎn)品推薦模型及算法
3、 基于流行度的推薦
? 基于排行榜的推薦,適用于剛注冊的用戶
? 優(yōu)化思路:分群推薦
4、 基于內(nèi)容的推薦CBR
? 關(guān)鍵問題:如何計(jì)算物品的相似度
? 優(yōu)缺點(diǎn)
? 優(yōu)化:Rocchio算法、基于標(biāo)簽的推薦、基于興趣度的推薦
5、 基于用戶的推薦
? 關(guān)鍵問題:如何對用戶分類/計(jì)算用戶的相似度
? 算法:按屬性分類、RFM模型、PCA、聚類、按偏好分類、按地理位置
6、 協(xié)同過濾的推薦
? 基于用戶的協(xié)同過濾
? 基于物品的協(xié)同過濾
? 冷啟動的問題
案例:計(jì)算用戶相似度、計(jì)算物品相似度
7、 基于關(guān)聯(lián)分析的推薦
? 如何制定套餐,實(shí)現(xiàn)交叉/捆綁銷售
案例:啤酒與尿布、颶風(fēng)與蛋撻
? 關(guān)聯(lián)分析模型原理(Association)
? 關(guān)聯(lián)規(guī)則的兩個(gè)關(guān)鍵參數(shù)
2 支持度
2 置信度
? 關(guān)聯(lián)分析的適用場景
案例:購物籃分析與產(chǎn)品捆綁銷售/布局優(yōu)化
案例:通信產(chǎn)品的交叉銷售與產(chǎn)品推薦
8、 基于分類模型的推薦
9、 其它推薦算法
? LFM基于隱語義模型
? 按社交關(guān)系
? 基于時(shí)間上下文
10、 多推薦引擎的協(xié)同工作
信用評分卡模型簡介
評分卡的關(guān)鍵問題
信用評分卡建立過程
? 篩選重要屬性
? 數(shù)據(jù)集轉(zhuǎn)化
? 建立分類模型
? 計(jì)算屬性分值
? 確定審批閾值
篩選重要屬性
? 屬性分段
? 基本概念:WOE、IV
? 屬性重要性評估
數(shù)據(jù)集轉(zhuǎn)化
? 連續(xù)屬性最優(yōu)分段
? 計(jì)算屬性取值的WOE
建立分類模型
? 訓(xùn)練邏輯回歸模型
? 評估模型
? 得到字段系數(shù)
計(jì)算屬性分值
? 計(jì)算補(bǔ)償與刻度值
? 計(jì)算各字段得分
? 生成評分卡
確定審批閾值
? 畫K-S曲線
? 計(jì)算K-S值
? 獲取最優(yōu)閾值
案例:構(gòu)建銀行小額貸款的用戶信用模型
結(jié)束:課程總結(jié)與問題答疑。
京公網(wǎng)安備 11011502001314號