推廣 熱搜: 2022  財務  微信  法律    網(wǎng)格化  管理  營銷  總裁班  安全 

大數(shù)據(jù)挖掘工具:SPSS Modeler入門與提高

主講老師: 傅一航 傅一航

主講師資:傅一航

課時安排: 1天/6小時
學習費用: 面議
課程預約: 隋老師 (微信同號)
課程簡介: 本課程面向數(shù)據(jù)分析部等專門負責數(shù)據(jù)分析與挖掘的人士,專注大數(shù)據(jù)挖掘工具SPSS Statistics的培訓。
內(nèi)訓課程分類: 綜合管理 | 人力資源 | 市場營銷 | 財務稅務 | 基層管理 | 中層管理 | 領導力 | 管理溝通 | 薪酬績效 | 企業(yè)文化 | 團隊管理 | 行政辦公 | 公司治理 | 股權激勵 | 生產(chǎn)管理 | 采購物流 | 項目管理 | 安全管理 | 質(zhì)量管理 | 員工管理 | 班組管理 | 職業(yè)技能 | 互聯(lián)網(wǎng)+ | 新媒體 | TTT培訓 | 禮儀服務 | 商務談判 | 演講培訓 | 宏觀經(jīng)濟 | 趨勢發(fā)展 | 金融資本 | 商業(yè)模式 | 戰(zhàn)略運營 | 法律風險 | 沙盤模擬 | 國企改革 | 鄉(xiāng)村振興 | 黨建培訓 | 保險培訓 | 銀行培訓 | 電信領域 | 房地產(chǎn) | 國學智慧 | 心理學 | 情緒管理 | 時間管理 | 目標管理 | 客戶管理 | 店長培訓 | 新能源 | 數(shù)字化轉(zhuǎn)型 | 工業(yè)4.0 | 電力行業(yè) |
更新時間: 2023-09-01 12:47


課程目標】

本課程面向數(shù)據(jù)分析部等專門負責數(shù)據(jù)分析與挖掘的人士,專注大數(shù)據(jù)挖掘工具SPSS Statistics的培訓。

本課程培訓覆蓋以下內(nèi)容:

1、 數(shù)據(jù)挖掘標準流程。

2、 數(shù)據(jù)挖掘模型原理。

3、 數(shù)據(jù)挖掘方法及應用。

 

 

 

本課程實際的業(yè)務需求出發(fā),對數(shù)據(jù)分析數(shù)據(jù)挖掘技術進行了全面的介紹通過大量的操作演練,幫助學員掌握數(shù)據(jù)分析和數(shù)據(jù)挖掘的思路、方法、工具,從大量的企業(yè)經(jīng)營數(shù)據(jù)進行分析,發(fā)現(xiàn)業(yè)務運作規(guī)律,進行客戶洞察,挖掘客戶行為特點,消費行為,實現(xiàn)精準營銷,幫助運營團隊深入理解業(yè)務運作,以達到提升學員的數(shù)據(jù)綜合分析能力,支撐運營決策的目的。

 

通過本課程的學習,達到如下目的:

1、 了解大數(shù)據(jù)基礎知識,理解大數(shù)據(jù)思維方式。

2、 了解數(shù)據(jù)分析與數(shù)據(jù)挖掘的基本知識(統(tǒng)計、分布、概率等)。

3、 掌握數(shù)據(jù)挖掘的基本過程和步驟,掌握數(shù)據(jù)挖掘的方法。

4、 理解數(shù)據(jù)挖掘的常見模型,原理及適用場景。

5、 熟練掌握Modeler基本操作,能利用Modeler進行數(shù)據(jù)挖掘。

 

【授課時間】

2~4時間,或根據(jù)客戶需求選擇

內(nèi)容

2

4


標準流程


預處理


可視化


影響因素


數(shù)值預測

回歸時序

季節(jié)模型


回歸優(yōu)化



分類模型

僅決策樹

ANN/SVM


市場細分



客戶價值



假設檢驗



實戰(zhàn)



 

【授課對象】

業(yè)務支撐、網(wǎng)絡中心、IT系統(tǒng)部、數(shù)據(jù)分析部等對業(yè)務數(shù)據(jù)分析有較高要求的相關專業(yè)人員。

【學員要求】

1、 每個學員自備一臺便攜機(必須)

2、 便攜機中事先安裝好SPSS modeler v14.1版本以上軟件。

注:講師可以提供試用版本軟件及分析數(shù)據(jù)源。

【授課方式】

基礎知識 + 案例演練 + 實際業(yè)務問題分析 + 工具實際操作

 

本課程突出數(shù)據(jù)挖掘的實際應用,結(jié)合行業(yè)的典型應用特點,從實際問題入手,引出相關知識,進行大數(shù)據(jù)的收集與處理;探索數(shù)據(jù)之間的規(guī)律及關聯(lián)性,幫助學員掌握系統(tǒng)的數(shù)據(jù)預處理方法;介紹常用的模型,訓練模型,并優(yōu)化模型,以達到最優(yōu)分析結(jié)果。

課程大綱】

IBM SPPS Modeler是一個數(shù)據(jù)流處理工具,適用于數(shù)據(jù)探索與數(shù)據(jù)挖掘,包括數(shù)據(jù)預處理、數(shù)據(jù)探索、數(shù)據(jù)可視化、數(shù)據(jù)建模、數(shù)據(jù)模型優(yōu)化。

第一部分: 大數(shù)據(jù)的核心理念

問題:大數(shù)據(jù)的核心價值是什么?大數(shù)據(jù)是怎樣用于業(yè)務決策?

1、 大數(shù)據(jù)時代:你缺的不是一堆方法,而是大數(shù)據(jù)思維

2、 大數(shù)據(jù)是探索事物發(fā)展和變化規(guī)律的工具

3、 一切不以解決業(yè)務問題為導向的大數(shù)據(jù)都是耍流氓

4、 大數(shù)據(jù)的核心能力

發(fā)現(xiàn)業(yè)務運行規(guī)律及問題

探索業(yè)務未來發(fā)展趨勢

5、 從案例看大數(shù)據(jù)的核心本質(zhì)

用趨勢圖來探索產(chǎn)品銷量規(guī)律

從谷歌的GFT產(chǎn)品探索用戶需求變化

從美國總統(tǒng)競選看大數(shù)據(jù)對選民行為進行分析

從大數(shù)據(jù)炒股看大數(shù)據(jù)如何探索因素的相關性

6、 認識大數(shù)據(jù)分析

什么數(shù)據(jù)分析

數(shù)據(jù)分析三大作用

常用分析的三大類別

案例喜歡賺“差價”的營業(yè)員(用數(shù)據(jù)管理來識別)

7、 數(shù)據(jù)分析需要什么樣的能力

懂業(yè)務、懂管理、懂分析、懂工具、懂呈現(xiàn)

8、 大數(shù)據(jù)應用系統(tǒng)的四層結(jié)構(gòu)

數(shù)據(jù)基礎層、數(shù)據(jù)模型層、業(yè)務模型層、業(yè)務應用層

9、 大數(shù)據(jù)分析的兩大核心理念

10、 大數(shù)據(jù)分析面臨的常見問題

不知道分析什么(分析目的不明確

不知道怎樣分析(缺少分析方法

不知道收集什么樣的數(shù)據(jù)(業(yè)務理解不足

不知道下一步怎么做(不了解分析過程

看不懂數(shù)據(jù)表達的意思(數(shù)據(jù)解讀能力差

擔心分析不夠全面(分析思路不系統(tǒng)

 

第二部分: 數(shù)據(jù)挖掘標準流程

1、 數(shù)據(jù)挖掘概述

2、 數(shù)據(jù)挖掘標準流程CRISP-DM

商業(yè)理解

數(shù)據(jù)準備

數(shù)據(jù)理解

模型建立

模型評估

模型應用

案例客戶匹配度建模找到你的準客戶

案例:客戶流失預測及客戶挽留

3、 數(shù)據(jù)集概述

4、 數(shù)據(jù)集的類型

5、 數(shù)據(jù)集屬性的類型

標稱

序數(shù)

度量

6、 數(shù)據(jù)質(zhì)量三要素

準確性

完整性

一致性

 

第三部分: 數(shù)據(jù)預處理過程

1、 SPSS工具簡介

2、 數(shù)據(jù)預處理的主要任務

數(shù)據(jù)集成:多個數(shù)據(jù)集的合并

數(shù)據(jù)清理:異常值的處理

數(shù)據(jù)處理:數(shù)據(jù)篩選、數(shù)據(jù)精簡、數(shù)據(jù)平衡

變量處理:變量變換、變量派生、變量精簡

數(shù)據(jù)歸約:實現(xiàn)降維,避免維災難

3、 數(shù)據(jù)集成

外部數(shù)據(jù)讀入:Txt/Excel/SPSS/Database

數(shù)據(jù)追加(添加數(shù)據(jù))

變量合并(添加變量)

4、 數(shù)據(jù)理解(異常數(shù)據(jù)處理

取值范圍限定

重復值處理

無效值/錯誤值處理

缺失值處理

離群值/極端值處理

數(shù)據(jù)質(zhì)量評估

5、 數(shù)據(jù)準備:數(shù)據(jù)處理

數(shù)據(jù)篩選:數(shù)據(jù)抽樣/選擇(減少樣本數(shù)量)

數(shù)據(jù)精簡:數(shù)據(jù)分段/離散化(減少變量的取值個數(shù))

數(shù)據(jù)平衡:正反樣本比例均衡

6、 數(shù)據(jù)準備:變量處理

變量變換:原變量取值更新,比如標準化

變量派生:根據(jù)舊變量生成新的變量

變量精簡:降維,減少變量個數(shù)

7、 數(shù)據(jù)降維

常用降維的方法

如何確定變量個數(shù)

特征選擇:選擇重要變量,剔除不重要的變量

從變量本身考慮

從輸入變量與目標變量的相關性考慮

對輸入變量進行合并

因子分析(主成分分析)

因子分析的原理

因子個數(shù)如何選擇

如何解讀因子含義

案例:提取影響電信客戶流失的主成分分析

8、 數(shù)據(jù)探索性分析

常用統(tǒng)計指標分析

單變量:數(shù)值變量/分類變量

雙變量:交叉分析/相關性分析

多變量:特征選擇、因子分析

演練:描述性分析(頻數(shù)、描述、探索、分類匯總)

第四部分: 數(shù)據(jù)可視化篇

1、 數(shù)據(jù)可視化的原則

2、 常用可視化工具

3、 常用可視化圖形

柱狀圖、條形圖、餅圖、折線圖、箱圖、散點圖等

4、 圖形的表達及適用場景

演練:各種圖形繪制

 

第五部分: 影響因素分析

問題:如何判斷一個因素對另一個因素有影響?比如營銷費用是否會影響銷售額?產(chǎn)品價格是否會影響銷量?產(chǎn)品的陳列位置是否會影響銷量?

風險控制的關鍵因素有哪些?如何判斷?

1、 影響因素分析的常見方法

2、 相關分析(衡量變量間的的相關性)

問題:這兩個屬性是否會相互影響?影響程度大嗎?營銷費用會影響銷售額嗎? 

什么是相關關系

相關系數(shù):衡量相關程度的指標

相關系數(shù)的三個計算公式

相關分析的假設檢驗

相關分析的基本步驟

相關分析應用場景

演練:體重與腰圍的關系

演練:營銷費用會影響銷售額嗎

演練:哪些因素與汽車銷量有相關性

演練通信費用與開通月數(shù)的相關分析

案例:酒樓生意好壞與報紙銷量的相關分析

偏相關分析

距離相關分析

3、 方差分析

問題:哪些才是影響銷量的關鍵因素?

方差分析解決什么問題

方差分析種類:單因素/雙因素可重復/雙因素無重復

方差分析的應用場景

方差分析的原理與步驟

如何解決方差分析結(jié)果

演練終端擺放位置與終端銷量有關嗎?

演練:開通月數(shù)驛客戶流失的影響分析

演練:客戶學歷對消費水平的影響分析

演練廣告和價格是影響終端銷量的關鍵因素嗎

演練營業(yè)員的性別、技能級別產(chǎn)品銷量有影響嗎?

案例2015年大學生工資與父母職業(yè)的關系

案例:醫(yī)生洗手與嬰兒存活率的關系

演練:尋找影響產(chǎn)品銷量的關鍵因素

多因素方差分析原理

多因素方差結(jié)果的解讀

演練:廣告形式、地區(qū)對銷量的影響因素分析(多因素)

協(xié)方差分析原理

演練:飼料對生豬體重的影響分析(協(xié)方差分析)

4、 列聯(lián)分析(兩類別變量的相關性分析)

交叉表與列聯(lián)表

卡方檢驗的原理

卡方檢驗的幾個計算公式

列聯(lián)表分析的適用場景

案例:套餐類型對客戶流失的影響分析

案例:學歷對業(yè)務套餐偏好的影響分析

案例:行業(yè)/規(guī)模對風控的影響分析

第六部分: 數(shù)值預測模型

問題:如何預測產(chǎn)品的銷量/銷售金額?如果產(chǎn)品跟隨季節(jié)性變動,該如何預測?新產(chǎn)品上市,如果評估銷量上限及銷售增速?

1、 銷量預測與市場預測——讓你看得更遠

2、 回歸預測/回歸分析

問題:如何預測未來的銷售量(定量分析)?

回歸分析的基本原理和應用場景

回歸分析的種類(一元/多元、線性/曲線)

得到回歸方程的幾種常用方法

回歸分析的五個步驟與結(jié)果解讀

回歸預測結(jié)果評估(如何評估預測質(zhì)量,如何選擇最佳回歸模型)

演練:散點圖找推廣費用與銷售額的關系(一元線性回歸)

演練推廣費用、辦公費用與銷售額的關系(多元線性回歸)

演練讓你的營銷費用預算更準確

演練:如何選擇最佳的回歸預測模型(曲線回歸)

帶分類變量的回歸預測

演練:汽車季度銷量預測

演練工齡、性別與終端銷量的關系

演練:如何評估銷售目標與資源配置(營業(yè)廳)

3、 時序預測

問題:隨著時間變化,未來的銷量變化趨勢如何?

時序分析的應用場景(基于時間的變化規(guī)律)

移動平均MA的預測原理

指數(shù)平滑ES的預測原理

自回歸移動平均ARIMA模型

如何評估預測值的準確性?

案例銷售額的時序預測及評估

演練:汽車銷量預測及評估

演練:電視機銷量預測分析

演練:上海證券交易所綜合指數(shù)收益率序列分析

演練:服裝銷售數(shù)據(jù)季節(jié)性趨勢預測分析

第七部分: 回歸模型優(yōu)化篇

1、 回歸模型的基本原理

三個基本概念:總變差、回歸變差、剩余變差

方程的顯著性檢驗:是否可以做回歸分析?

擬合優(yōu)度檢驗:回歸模型的質(zhì)量評估?

因素的顯著性檢驗:自變量是否可用?

理解標準誤差的含義:預測的準確性?

2、 模型優(yōu)化思路:尋找最佳回歸擬合線

如何處理異常數(shù)據(jù)(殘差與異常值排除)

如何剔除非顯著因素(因素顯著性檢驗)

如何進行非線性關系檢驗

如何進行相互作用檢驗

如何進行多重共線性檢驗

如何檢驗誤差項

如何判斷模型過擬合

案例:模型優(yōu)化案例

第八部分: 分類預測模型篇

問題:如何評估客戶購買產(chǎn)品的可能性?如何預測客戶的購買行為?如何提取某類客戶的典型特征?如何向客戶精準推薦產(chǎn)品或業(yè)務?

1、 分類模型概述

2、 常見分類預測模型

3、 邏輯回歸模型

邏輯回歸模型原理及適用場景

邏輯回歸種類:二元/多元邏輯回歸

如何解讀邏輯回歸方程

案例:如何評估用戶是否會購買某產(chǎn)品(二元邏輯)

消費者品牌選擇模型分析

案例品牌選擇模型分析,你的品牌適合哪些人群?(多元邏輯)

4、 分類決策樹

問題:如何預測客戶行為?如何識別潛在客戶?

風控:如何識別欠貸者的特征,以及預測欠貸概率?

客戶保有:如何識別流失客戶特征,以及預測客戶流失概率?

決策樹分類簡介

如何評估分類性能?

案例:美國零售商(Target)如何預測少女懷孕

演練:識別銀行欠貨風險,提取欠貸者的特征

構(gòu)建決策樹的三個關鍵問題

如何選擇最佳屬性來構(gòu)建節(jié)點

如何分裂變量

修剪決策樹

選擇最優(yōu)屬性

熵、基尼索引、分類錯誤

屬性劃分增益

如何分裂變量

多元劃分與二元劃分

連續(xù)變量離散化(最優(yōu)劃分點)

修剪決策樹

剪枝原則

預剪枝與后剪枝

構(gòu)建決策樹的四個算法

C5.0、CHAID、CART、QUEST

各種算法的比較

如何選擇最優(yōu)分類模型?

案例商場酸奶購買用戶特征提取

案例:電信運營商客戶流失預警與客戶挽留

案例:識別拖欠銀行貨款者的特征,避免不良貨款

案例:識別電信詐騙者嘴臉,讓通信更安全

5、 人工神經(jīng)網(wǎng)絡(ANN)

神經(jīng)網(wǎng)絡概述

神經(jīng)網(wǎng)絡基本原理

神經(jīng)網(wǎng)絡的結(jié)構(gòu)

神經(jīng)網(wǎng)絡的建立步驟

神經(jīng)網(wǎng)絡的關鍵問題

BP反向傳播網(wǎng)絡(MLP)

徑向基網(wǎng)絡(RBF)

案例評估銀行用戶拖欠貨款的概率

6、 支持向量機(SVM)

SVM基本原理

線性可分問題:最大邊界超平面

線性不可分問題:特征空間的轉(zhuǎn)換

維空難與核函數(shù)

7、 判別分析

判別分析原理

距離判別法

典型判別法

貝葉斯判別法

案例:MBA學生錄取判別分析

案例:上市公司類別評估

第九部分: 市場細分模型篇

問題:我們的客戶有幾類?各類特征是什么?如何實現(xiàn)客戶細分,開發(fā)符合細分市場的新產(chǎn)品?如何提取客戶特征,從而對產(chǎn)品進行市場定位?

1、 市場細分的常用方法

有指導細分

無指導細分

2、 聚類分析

如何更好的了解客戶群體和市場細分?

如何識別客戶群體特征?

如何確定客戶要分成多少適當?shù)念悇e?

聚類方法原理介紹

聚類方法作用及其適用場景

聚類分析的種類

K均值聚類(快速聚類)

案例移動三大品牌細分市場合適嗎?

演練:寶潔公司如何選擇新產(chǎn)品試銷區(qū)域?

演練如何評選優(yōu)秀員工?

演練:中國各省份發(fā)達程度分析,讓數(shù)據(jù)自動聚類

層次聚類(系統(tǒng)聚類):發(fā)現(xiàn)多個類別

R型聚類與Q型聚類的區(qū)別

案例:中移動如何實現(xiàn)客戶細分及營銷策略

演練中國省市經(jīng)濟發(fā)展情況分析(Q型聚類)

演練:裁判評分的標準衡量,避免“黑哨”(R型聚類)

兩步聚類

3、 主成分分析PCA分析

主成分分析原理

主成分分析基本步驟

主成分分析結(jié)果解讀

演練:PCA探索汽車購買者的細分市場

4、 RFM模型客戶細分框架

 

第十部分: 客戶價值評估

1、 客戶價值評估與RFM模型

問題:如何評估客戶的價值?如何針對不同客戶采取不同的營銷策略?

RFM模型,更深入了解你的客戶價值

RFM的客戶細分框架理解

RFM模型與市場策略

RFM模型與活躍度

演練:“雙11”淘寶商家如何選擇客戶進行促銷

演練:結(jié)合響應模型,宜家IKE實現(xiàn)最大化營銷利潤

演練:重購用戶特征分析

第十一部分: 產(chǎn)品推薦模型

問題:購買A產(chǎn)品的顧客還常常要購買其他什么產(chǎn)品?應該給客戶推薦什么產(chǎn)品最有可能被接受?

1、 常用產(chǎn)品推薦模型

2、 關聯(lián)分析

如何制定套餐,實現(xiàn)交叉/捆綁銷售

案例:啤酒與尿布、颶風與蛋撻

關聯(lián)分析模型原理Association

關聯(lián)規(guī)則的兩個關鍵參數(shù)

支持度

置信度

關聯(lián)分析的適用場景

案例購物籃分析與產(chǎn)品捆綁銷售/布局優(yōu)化

案例:理財產(chǎn)品的交叉銷售與產(chǎn)品推薦

如何提取關聯(lián)規(guī)則(關聯(lián)分析的算法)

Apriori算法

FP-Growth算法

3、 協(xié)同過濾

4、 分類預測模型

 

結(jié)束:課程總結(jié)問題答疑。

 
反對 0舉報 0 收藏 0
更多>與大數(shù)據(jù)挖掘工具:SPSS Modeler入門與提高相關內(nèi)訓課
企業(yè)家經(jīng)營哲學與企業(yè)經(jīng)營之道 高   效   執(zhí)   行   力 教練式經(jīng)銷商管理 商業(yè)模式創(chuàng)新 創(chuàng)新思維管理應用訓練?—創(chuàng)造性解決問題 創(chuàng)新思維和有效執(zhí)行 微課的設計與制作 高效能主管風暴訓練營
傅一航老師介紹>傅一航老師其它課程
大數(shù)據(jù)產(chǎn)業(yè)現(xiàn)狀及應用創(chuàng)新 大數(shù)據(jù)挖掘工具:SPSS Modeler入門與提高 大數(shù)據(jù)挖掘工具: SPSS Statistics入門與提高 大數(shù)據(jù)建模與模型優(yōu)化實戰(zhàn)培訓 金融行業(yè)風險預測模型實戰(zhàn) 數(shù)說營銷——大數(shù)據(jù)營銷實戰(zhàn)培訓 大數(shù)據(jù)分析與挖掘綜合能力提升實戰(zhàn) 助力市場營銷與服務的數(shù)據(jù)分析實戰(zhàn)
網(wǎng)站首頁  |  關于我們  |  聯(lián)系方式  |  誠聘英才  |  網(wǎng)站聲明  |  隱私保障及免責聲明  |  網(wǎng)站地圖  |  排名推廣  |  廣告服務  |  積分換禮  |  網(wǎng)站留言  |  RSS訂閱  |  違規(guī)舉報  |  京ICP備11016574號-25