推廣 熱搜: 2022  財(cái)務(wù)  微信  法律    網(wǎng)格化  管理  營(yíng)銷  總裁班  安全 

數(shù)說營(yíng)銷——大數(shù)據(jù)營(yíng)銷實(shí)戰(zhàn)培訓(xùn)

主講老師: 傅一航 傅一航

主講師資:傅一航

課時(shí)安排: 1天/6小時(shí)
學(xué)習(xí)費(fèi)用: 面議
課程預(yù)約: 隋老師 (微信同號(hào))
課程簡(jiǎn)介: 本課程從實(shí)際的市場(chǎng)營(yíng)銷問題出發(fā),構(gòu)建數(shù)據(jù)分析與數(shù)據(jù)挖掘模型,以解決實(shí)際的商業(yè)問題。并對(duì)大數(shù)據(jù)分析與挖掘技術(shù)進(jìn)行了全面的介紹,通過從大量的市場(chǎng)營(yíng)銷數(shù)據(jù)中分析潛在的客戶特征,挖掘客戶行為特點(diǎn),實(shí)現(xiàn)精準(zhǔn)營(yíng)銷,幫助市場(chǎng)營(yíng)銷團(tuán)隊(duì)深入理解業(yè)務(wù)運(yùn)作,支持業(yè)務(wù)策略制定以及運(yùn)營(yíng)決策。
內(nèi)訓(xùn)課程分類: 綜合管理 | 人力資源 | 市場(chǎng)營(yíng)銷 | 財(cái)務(wù)稅務(wù) | 基層管理 | 中層管理 | 領(lǐng)導(dǎo)力 | 管理溝通 | 薪酬績(jī)效 | 企業(yè)文化 | 團(tuán)隊(duì)管理 | 行政辦公 | 公司治理 | 股權(quán)激勵(lì) | 生產(chǎn)管理 | 采購(gòu)物流 | 項(xiàng)目管理 | 安全管理 | 質(zhì)量管理 | 員工管理 | 班組管理 | 職業(yè)技能 | 互聯(lián)網(wǎng)+ | 新媒體 | TTT培訓(xùn) | 禮儀服務(wù) | 商務(wù)談判 | 演講培訓(xùn) | 宏觀經(jīng)濟(jì) | 趨勢(shì)發(fā)展 | 金融資本 | 商業(yè)模式 | 戰(zhàn)略運(yùn)營(yíng) | 法律風(fēng)險(xiǎn) | 沙盤模擬 | 國(guó)企改革 | 鄉(xiāng)村振興 | 黨建培訓(xùn) | 保險(xiǎn)培訓(xùn) | 銀行培訓(xùn) | 電信領(lǐng)域 | 房地產(chǎn) | 國(guó)學(xué)智慧 | 心理學(xué) | 情緒管理 | 時(shí)間管理 | 目標(biāo)管理 | 客戶管理 | 店長(zhǎng)培訓(xùn) | 新能源 | 數(shù)字化轉(zhuǎn)型 | 工業(yè)4.0 | 電力行業(yè) |
更新時(shí)間: 2023-09-01 12:17


課程目標(biāo)】

本課程實(shí)際的市場(chǎng)營(yíng)銷問題出發(fā),構(gòu)建數(shù)據(jù)分析與數(shù)據(jù)挖掘模型,以解決實(shí)際的商業(yè)問題。并對(duì)大數(shù)據(jù)分析與挖掘技術(shù)進(jìn)行了全面的介紹通過從大量的市場(chǎng)營(yíng)銷數(shù)據(jù)中分析潛在的客戶特征,挖掘客戶行為特點(diǎn),實(shí)現(xiàn)精準(zhǔn)營(yíng)銷,幫助市場(chǎng)營(yíng)銷團(tuán)隊(duì)深入理解業(yè)務(wù)運(yùn)作,支持業(yè)務(wù)策略制定以及運(yùn)營(yíng)決策。

通過本課程的學(xué)習(xí),達(dá)到如下目的:

1、 了解大數(shù)據(jù)營(yíng)銷內(nèi)容,掌握大數(shù)據(jù)在營(yíng)銷中的應(yīng)用。

2、 了解基本的營(yíng)銷理論,并學(xué)會(huì)基于營(yíng)銷理念來展開大數(shù)據(jù)分析。

3、 熟悉數(shù)據(jù)分析/挖掘的基本過程,掌握常用數(shù)據(jù)挖掘方法。

4、 熟悉Excel數(shù)據(jù)分析工具,能夠利用ExcelSPSS軟件解決實(shí)際的營(yíng)銷問題(比如定價(jià)/影響因素/行為預(yù)測(cè)/客戶需求/客戶價(jià)值/市場(chǎng)細(xì)分等)。

 

【授課時(shí)間】

2-4時(shí)間,或者根據(jù)培訓(xùn)需求選擇組合(每天6個(gè)小時(shí))

內(nèi)容

2

4

核心數(shù)據(jù)思維

數(shù)據(jù)分析過程

用戶行為分析

數(shù)據(jù)分析思路

影響因素分析

產(chǎn)品銷量預(yù)測(cè)

回歸

時(shí)序

客戶行為預(yù)測(cè)


市場(chǎng)客戶細(xì)分


客戶價(jià)值評(píng)估


產(chǎn)品推薦模型


產(chǎn)品定價(jià)策略


 

【授課對(duì)象】

市場(chǎng)營(yíng)銷部、運(yùn)營(yíng)分析部、業(yè)務(wù)支撐等偏業(yè)務(wù)人員。

本課程由淺入深,結(jié)合原理主講分析方法和常規(guī)分析工具的應(yīng)用,不需要太深的數(shù)學(xué)知識(shí),但希望掌握數(shù)據(jù)分析的相關(guān)人員。

【學(xué)員要求】

1、 每個(gè)學(xué)員自備一臺(tái)便攜機(jī)(必須)。

2、 便攜機(jī)中事先安裝好Excel 2013版本及以上(前兩天用)。

3、 便攜機(jī)中事先安裝好IBM SPSS Statistics v24版本及以上(后兩天用)。

注:講師可以提供試用版本軟件及分析數(shù)據(jù)源。

【授課方式】

理論精 + 案例演練 + 實(shí)際業(yè)務(wù)問題分析 + Excel實(shí)踐操作 + SPSS實(shí)踐操作

本課程突出數(shù)據(jù)分析的實(shí)際應(yīng)用,結(jié)合行業(yè)的典型應(yīng)用特點(diǎn),圍繞實(shí)際的商業(yè)問題,進(jìn)行大數(shù)據(jù)的分析挖掘,介紹常用的方法和模型,以及模型適用場(chǎng)景通過演練操作,以達(dá)到提升學(xué)員對(duì)營(yíng)銷數(shù)據(jù)的分析以及對(duì)數(shù)據(jù)模型的深入理解

課程大綱】

第一部分: 數(shù)據(jù)核心理念數(shù)據(jù)思維篇

問題:什么是數(shù)據(jù)思維?大數(shù)據(jù)決策的底層邏輯以及決策依據(jù)是什么?

1、 數(shù)字化五大技術(shù)戰(zhàn)略:ABCDI戰(zhàn)略

A:人工智能,目的是用機(jī)器模擬人類行為

B:區(qū)塊鏈,構(gòu)建不可篡改的分布記賬系統(tǒng)

C:云計(jì)算,搭建按需分配的計(jì)算資源平臺(tái)

D:大數(shù)據(jù),實(shí)現(xiàn)智能化的判斷和決策機(jī)制

I:物聯(lián)網(wǎng),實(shí)現(xiàn)萬物互聯(lián)通信的基礎(chǔ)架構(gòu)

2、 大數(shù)據(jù)的本質(zhì)

數(shù)據(jù),事物發(fā)展和變化過程中留下的痕跡

大數(shù)據(jù)不在于量大,而在于全(多維性)

業(yè)務(wù)導(dǎo)向還是技術(shù)導(dǎo)向

3、 大數(shù)據(jù)決策的底層邏輯(即四大核心價(jià)值)

探索業(yè)務(wù)規(guī)律,按規(guī)律來管理決策

案例客流規(guī)律與排班及最佳營(yíng)銷時(shí)機(jī)

案例:致命交通事故發(fā)生的時(shí)間規(guī)律

發(fā)現(xiàn)運(yùn)營(yíng)變化,定短板來運(yùn)營(yíng)決策

案例考核周期導(dǎo)致的員工月初懈怠

案例:工序信號(hào)異常監(jiān)測(cè)設(shè)備故障

理清要素關(guān)系,找影響因素來決策

案例情緒對(duì)于股市漲跌的影響

案例:為何升職反而會(huì)增加離職風(fēng)險(xiǎn)?

預(yù)測(cè)未來趨勢(shì),通過預(yù)判進(jìn)行決策

案例惠普預(yù)測(cè)員工離職風(fēng)險(xiǎn)及挽留

案例:保險(xiǎn)公司的車險(xiǎn)預(yù)測(cè)與個(gè)性化保費(fèi)定價(jià)

4、 大數(shù)據(jù)決策的三個(gè)關(guān)鍵環(huán)節(jié)

業(yè)務(wù)數(shù)據(jù)化:將業(yè)務(wù)問題轉(zhuǎn)化為數(shù)據(jù)問題

數(shù)據(jù)信息化:提取數(shù)據(jù)中的業(yè)務(wù)規(guī)律信息

信息策略化:基于規(guī)律形成業(yè)務(wù)應(yīng)對(duì)策略

案例用數(shù)據(jù)來識(shí)別喜歡賺“差價(jià)”的營(yíng)業(yè)員

第二部分: 數(shù)據(jù)精準(zhǔn)營(yíng)銷分析過程篇

問題:大數(shù)據(jù)實(shí)現(xiàn)精準(zhǔn)營(yíng)銷的整個(gè)過程是什么?要經(jīng)歷哪些步驟?如何構(gòu)建精準(zhǔn)營(yíng)銷的數(shù)據(jù)支撐框架?需要采集哪些數(shù)據(jù)?

1、 數(shù)據(jù)分析的六

明確目標(biāo),確定分析思路

收集數(shù)據(jù),尋找分析素材

整理數(shù)據(jù),確保數(shù)據(jù)質(zhì)量

分析數(shù)據(jù),尋找業(yè)務(wù)答案

呈現(xiàn)數(shù)據(jù),解讀業(yè)務(wù)規(guī)律

撰寫報(bào)告,形成業(yè)務(wù)策略

2、 精準(zhǔn)營(yíng)銷的業(yè)務(wù)分析框架(6R準(zhǔn)則)

尋找正確的客戶

匹配正確的產(chǎn)品

確定合理的價(jià)格

通過合適的渠道

采用合適的方式

設(shè)計(jì)恰當(dāng)?shù)男畔?/span>

演練:如何構(gòu)建一個(gè)良好的大數(shù)據(jù)精準(zhǔn)營(yíng)銷分析框架

3、 精準(zhǔn)營(yíng)銷項(xiàng)目的整個(gè)分析過程

演練如何用大數(shù)據(jù)來支撐產(chǎn)品精準(zhǔn)營(yíng)銷項(xiàng)目

第三部分: 用戶行為分析分析方法

問題:數(shù)據(jù)分析方法的種類?分析方法的不同應(yīng)用場(chǎng)景?

1、 業(yè)務(wù)分析的三個(gè)階段

現(xiàn)狀分析:通過企業(yè)運(yùn)營(yíng)指標(biāo)來發(fā)現(xiàn)規(guī)律及短板

原因分析:查找數(shù)據(jù)相關(guān)性,探尋目標(biāo)影響因素

預(yù)測(cè)分析:合理配置資源,預(yù)判業(yè)務(wù)未來的趨勢(shì)

2、 常用的數(shù)據(jù)分析方法種類

描述性分析法(對(duì)比/分組/結(jié)構(gòu)/趨勢(shì)/交叉

相關(guān)性分析法(相關(guān)/方差/卡方

預(yù)測(cè)性分析法(回歸/時(shí)序/決策樹/神經(jīng)網(wǎng)絡(luò)

專題性分析法(聚類/關(guān)聯(lián)/RFM模型/

3、 統(tǒng)計(jì)分析基礎(chǔ)

統(tǒng)計(jì)分析兩大關(guān)鍵要素(類別、指標(biāo))

統(tǒng)計(jì)分析的操作模式(類別à指標(biāo))

統(tǒng)計(jì)分析三個(gè)操作步驟(統(tǒng)計(jì)、畫圖、解讀)

透視表的三個(gè)組成部分

4、 常用的描述性指標(biāo)

集中程度:均值、中位數(shù)、眾數(shù)

離散程度:極差、方差/標(biāo)準(zhǔn)差、IQR

分布形態(tài):偏度、峰度

5、 基本分析方法及其適用場(chǎng)景

對(duì)比分析(查看數(shù)據(jù)差距,發(fā)現(xiàn)事物變化)

演練:尋找用戶的地域分布特征

演練:分析產(chǎn)品受歡迎情況及貢獻(xiàn)大小

演練:用數(shù)據(jù)來探索增量不增收困境的解決方案

分布分析(查看數(shù)據(jù)分布,探索業(yè)務(wù)層次)

演練:銀行用戶的消費(fèi)水平和消費(fèi)層次分析

演練客戶年齡分布/收入分布分析

案例:通信運(yùn)營(yíng)商的流量套餐劃分合理性的評(píng)估

演練:呼叫中心接聽電話效率分析(呼叫中心)

結(jié)構(gòu)分析(查看指標(biāo)構(gòu)成,評(píng)估結(jié)構(gòu)合理性)

案例:增值業(yè)務(wù)收入結(jié)構(gòu)分析(通信)

案例:物流費(fèi)用成本結(jié)構(gòu)分析(物流)

案例:中移動(dòng)用戶群動(dòng)態(tài)結(jié)構(gòu)分析

演練:財(cái)務(wù)領(lǐng)域的結(jié)構(gòu)瀑布圖、財(cái)務(wù)收支的變化瀑布圖

趨勢(shì)分析(發(fā)現(xiàn)事物隨時(shí)間的變化規(guī)律)

案例:破解零售店銷售規(guī)律

案例:手機(jī)銷量的淡旺季分析

案例:微信用戶的活躍時(shí)間規(guī)律

演練:發(fā)現(xiàn)客流量的時(shí)間規(guī)律

交叉分析(從多個(gè)維度的數(shù)據(jù)指標(biāo)分析)

演練:用戶性別+地域分布分析

演練:不同客戶的產(chǎn)品偏好分析

演練:不同學(xué)歷用戶的套餐偏好分析

演練:銀行用戶的違約影響因素分析

第四部分: 用戶行為分析分析框架

問題:如何才能全面/系統(tǒng)地分析而不遺漏?如何分解和細(xì)化業(yè)務(wù)問題?

1、 業(yè)務(wù)分析思路和分析框架來源于業(yè)務(wù)模型

2、 常用的業(yè)務(wù)模型

外部環(huán)境分析:PEST

業(yè)務(wù)專題分析:5W2H

競(jìng)品/競(jìng)爭(zhēng)分析:SWOT、波特五力

營(yíng)銷市場(chǎng)專題分析:4P/4C等

3、 用戶行為分析5W2H分析思路和框架

WHY:原因(用戶需求、產(chǎn)品亮點(diǎn)、競(jìng)品優(yōu)劣勢(shì))

WHAT:產(chǎn)品(產(chǎn)品喜好、產(chǎn)品貢獻(xiàn)、產(chǎn)品功能、產(chǎn)品結(jié)構(gòu))

WHO:客戶(基本特征、消費(fèi)能力、產(chǎn)品偏好)

WHEN:時(shí)間(淡旺季、活躍時(shí)間、重購(gòu)周期)

WHERE:區(qū)域/渠道(區(qū)域喜好、渠道偏好)

HOW:支付/促銷(支付方式、促銷方式有效性評(píng)估等)

HOW MUCH:價(jià)格(費(fèi)用、成本、利潤(rùn)、收入結(jié)構(gòu)、價(jià)格偏好等)

案例討論結(jié)合公司情況,搭建用戶消費(fèi)習(xí)慣的分析框架(5W2H)

4、 數(shù)據(jù)分析策略

第五部分: 影響因素分析原因分析篇

營(yíng)銷問題:哪些因素是影響業(yè)務(wù)目標(biāo)的關(guān)鍵要素?比如,產(chǎn)品在貨架上的位置是否對(duì)銷量有影響??jī)r(jià)格和廣告開銷是如何影響銷量的?影響風(fēng)控的關(guān)鍵因素有哪些?如何判斷?

1、 影響因素分析的常見方法

2、 相關(guān)分析(衡量?jī)蓴?shù)據(jù)型變量的線性相關(guān)性)

相關(guān)分析簡(jiǎn)介

相關(guān)分析的應(yīng)用場(chǎng)景

相關(guān)分析的種類

簡(jiǎn)單相關(guān)分析

偏相關(guān)分析

距離相關(guān)分析

相關(guān)系數(shù)的三種計(jì)算公式

Pearson相關(guān)系數(shù)

Spearman相關(guān)系數(shù)

Kendall相關(guān)系數(shù)

相關(guān)分析的假設(shè)檢驗(yàn)

相關(guān)分析的四個(gè)基本步驟

演練:營(yíng)銷費(fèi)用會(huì)影響銷售額嗎?影響程度如何量化?

演練:哪些因素與汽車銷量有相關(guān)性

演練影響用戶消費(fèi)水平的因素會(huì)有哪些

偏相關(guān)分析

偏相關(guān)原理:排除不可控因素后的兩變量的相關(guān)性

偏相關(guān)系數(shù)的計(jì)算公式

偏相關(guān)分析的適用場(chǎng)景

距離相關(guān)分析

3、 方差分析(衡量類別變量與數(shù)值變量間的相關(guān)性)

方差分析的應(yīng)用場(chǎng)景

方差分析的三個(gè)種類

單因素方差分析

多因素方差分析

協(xié)方差分析

單因素方差分析的原理

方差分析的四個(gè)步驟

解讀方差分析結(jié)果的兩個(gè)要點(diǎn)

演練擺放位置與銷量有關(guān)嗎

演練:客戶學(xué)歷對(duì)消費(fèi)水平的影響分析

演練廣告和價(jià)格是影響終端銷量的關(guān)鍵因素嗎

演練營(yíng)業(yè)員的性別、技能級(jí)別對(duì)產(chǎn)品銷量有影響嗎

演練:尋找影響產(chǎn)品銷量的關(guān)鍵因素

多因素方差分析原理

多因素方差分析的作用

多因素方差結(jié)果的解讀

演練:廣告形式、地區(qū)對(duì)銷量的影響因素分析

協(xié)方差分析原理

協(xié)方差分析的適用場(chǎng)景

演練:排除產(chǎn)品價(jià)格,收入對(duì)銷量有影響嗎?

4、 列聯(lián)分析/卡方檢驗(yàn)(兩類別變量的相關(guān)性分析)

交叉表與列聯(lián)表:計(jì)數(shù)值與期望值

卡方檢驗(yàn)的原理

卡方檢驗(yàn)的幾個(gè)計(jì)算公式

列聯(lián)表分析的適用場(chǎng)景

案例:套餐類型對(duì)客戶流失的影響分析

案例:學(xué)歷對(duì)業(yè)務(wù)套餐偏好的影響分析

案例:行業(yè)/規(guī)模對(duì)風(fēng)控的影響分析

5、 相關(guān)性分析方法總結(jié)

第六部分: 產(chǎn)品銷量預(yù)測(cè)回歸預(yù)測(cè)篇

營(yíng)銷問題:如何預(yù)測(cè)未來的產(chǎn)品銷量/銷售額?如果產(chǎn)品跟隨季節(jié)性變動(dòng),該如何預(yù)測(cè)?

1、 回歸分析簡(jiǎn)介和原理

2、 回歸分析的種類

一元回歸/多元回歸

線性回歸/非線性回歸

3、 常用回歸分析方法

散點(diǎn)圖+趨勢(shì)線(一元)

線性回歸工具(多元線性)

規(guī)劃求解工具(非線性回歸)

演練:散點(diǎn)圖找營(yíng)銷費(fèi)用與銷售額的關(guān)系

4、 線性回歸分析的五個(gè)步驟

演練:營(yíng)銷費(fèi)用、辦公費(fèi)用與銷售額的關(guān)系(線性回歸)

5、 線性回歸方程的解讀技巧

定性描述:正相關(guān)/負(fù)相關(guān)

定量描述:自變量變化導(dǎo)致因變量的變化程度

6、 回歸預(yù)測(cè)模型評(píng)估

質(zhì)量評(píng)估指標(biāo):判定系數(shù)R^2

如何選擇最佳回歸模型

演練:如何選擇最佳的回歸預(yù)測(cè)模型(一元曲線回歸)

7、 帶分類自變量的回歸預(yù)測(cè)

演練:汽車季度銷量預(yù)測(cè)

演練工齡、性別與終端銷量的關(guān)系

演練:如何評(píng)估銷售目標(biāo)與資源最佳配置

8、 回歸分析的基本原理

三個(gè)基本概念:總變差、回歸變差、剩余變差

方程的顯著性檢驗(yàn):方程可用性

因素的顯著性檢驗(yàn):因素可用性

方程擬合優(yōu)度檢驗(yàn):質(zhì)量好壞程度

理解標(biāo)準(zhǔn)誤差含義:預(yù)測(cè)準(zhǔn)確性?

9、 回歸模型優(yōu)化措施:尋找最佳回歸擬合線

如何處理預(yù)測(cè)離群值(剔除離群值)

如何剔除顯著因素(剔除不顯著因素

如何進(jìn)行非線性關(guān)系檢驗(yàn)(增加非線性自變量)

如何進(jìn)行相互作用檢驗(yàn)(增加相互作用自變量)

如何進(jìn)行多重共線性檢驗(yàn)(剔除共線性自變量)

演練:模型優(yōu)化演示

10、 好模型都是優(yōu)化出來的

 

第七部分: 客流預(yù)測(cè)模型自定義回歸篇

1、 回歸建模的本質(zhì)

2、 規(guī)劃求解工具簡(jiǎn)介

3、 自定義回歸模型

案例:如何對(duì)客流量進(jìn)行建模預(yù)測(cè)及模型優(yōu)化

4、 季節(jié)性預(yù)測(cè)模型

回歸季節(jié)模型的原理及應(yīng)用場(chǎng)景

加法季節(jié)模型

乘法季節(jié)模型

模型解讀

案例美國(guó)航空旅客里程的季節(jié)性趨勢(shì)分析

5、 新產(chǎn)品累計(jì)銷量的S曲線

S曲線模型的應(yīng)用場(chǎng)景(最大累計(jì)銷量及銷量增長(zhǎng)的拐點(diǎn))

珀?duì)柷€

龔鉑茲曲線

案例如何預(yù)測(cè)產(chǎn)品的銷售增長(zhǎng)拐點(diǎn),以及銷量上限

演練:預(yù)測(cè)IPad產(chǎn)品的銷量

第八部分: 產(chǎn)品銷量預(yù)測(cè)時(shí)序預(yù)測(cè)篇

營(yíng)銷問題:像利率/CPI/GDP等按時(shí)序變化的指標(biāo)如何預(yù)測(cè)?當(dāng)銷量隨季節(jié)周期變動(dòng)時(shí)該如何預(yù)測(cè)?

1、 回歸預(yù)測(cè)vs時(shí)序預(yù)測(cè)

2、 因素分解思想

3、 時(shí)序預(yù)測(cè)常用模型

趨勢(shì)擬合

季節(jié)擬合

平均序列擬合

4、 評(píng)估預(yù)測(cè)值的準(zhǔn)確度指標(biāo):MAD、RMSE、MAPE

5、 移動(dòng)平均(MA)

應(yīng)用場(chǎng)景及原理

移動(dòng)平均種類

一次移動(dòng)平均

二次移動(dòng)平均

加權(quán)移動(dòng)平均

移動(dòng)平均比率法

移動(dòng)平均關(guān)鍵問題

如何選取最優(yōu)參數(shù)N

如何確定最優(yōu)權(quán)重系數(shù)

演練:平板電腦銷量預(yù)測(cè)及評(píng)估

演練:快銷產(chǎn)品季節(jié)銷量預(yù)測(cè)及評(píng)估

6、 指數(shù)平滑(ES)

應(yīng)用場(chǎng)景及原理

最優(yōu)平滑系數(shù)的選取原則

指數(shù)平滑種類

一次指數(shù)平滑

二次指數(shù)平滑(Brown線性、Holt線性、Holt指數(shù)、阻尼線性、阻尼指數(shù))

三次指數(shù)平滑

演練:煤炭產(chǎn)量預(yù)測(cè)

演練:航空旅客量預(yù)測(cè)及評(píng)估

7、 溫特斯季節(jié)預(yù)測(cè)模型

適用場(chǎng)景及原理

Holt-Winters加法模型

Holt-Winters乘法模型

演練:汽車銷量預(yù)測(cè)及評(píng)估

8、 平穩(wěn)序列模型(ARIMA

序列的平穩(wěn)性檢驗(yàn)

平穩(wěn)序列的擬合模型

AR(p)自回歸模型

MA(q)移動(dòng)模型

ARMA(p,q)自回歸移動(dòng)模型

模型的識(shí)別與定階

ACF圖/PACF

最小信息準(zhǔn)則

序列平穩(wěn)化處理

變量變換

k次差分

d階差分

ARIMA(p,d,q)模型

演練:上海證券交易所綜合指數(shù)收益率序列分析

演練:服裝銷售數(shù)據(jù)季節(jié)性趨勢(shì)預(yù)測(cè)分析

平穩(wěn)序列的建模流程

第九部分: 客戶行為預(yù)測(cè)分類預(yù)測(cè)篇

問題:如何評(píng)估客戶購(gòu)買產(chǎn)品的可能性?如何預(yù)測(cè)客戶的購(gòu)買行為?如何提取某類客戶的典型特征?如何向客戶精準(zhǔn)推薦產(chǎn)品或業(yè)務(wù)?

1、 分類模型概述及其應(yīng)用場(chǎng)景

2、 常見分類預(yù)測(cè)模型

3、 邏輯回歸(LR)

邏輯回歸的適用場(chǎng)景

邏輯回歸的模型原理

邏輯回歸分類的幾何意義

邏輯回歸的種類

二項(xiàng)邏輯回歸

多項(xiàng)邏輯回歸

如何解讀邏輯回歸方程

帶分類自變量的邏輯回歸分析

多項(xiàng)邏輯回歸/多分類邏輯回歸

案例如何評(píng)估用戶是否會(huì)購(gòu)買某產(chǎn)品(二項(xiàng)邏輯回歸

案例多品牌選擇模型分析(多項(xiàng)邏輯回歸)

4、 分類決策樹(DT)

問題:如何預(yù)測(cè)客戶行為?如何識(shí)別潛在客戶?

風(fēng)控:如何識(shí)別欠貸者的特征,以及預(yù)測(cè)欠貸概率?

客戶保有:如何識(shí)別流失客戶特征,以及預(yù)測(cè)客戶流失概率?

決策樹分類簡(jiǎn)介

案例:美國(guó)零售商(Target)如何預(yù)測(cè)少女懷孕

演練:識(shí)別銀行欠貨風(fēng)險(xiǎn),提取欠貸者的特征

決策樹分類的幾何意義

構(gòu)建決策樹的三個(gè)關(guān)鍵問題

如何選擇最佳屬性來構(gòu)建節(jié)點(diǎn)

如何分裂變量

修剪決策樹

選擇最優(yōu)屬性生長(zhǎng)

熵、基尼索引、分類錯(cuò)誤

屬性劃分增益

如何分裂變量

多元?jiǎng)澐峙c二元?jiǎng)澐?/span>

連續(xù)變量離散化(最優(yōu)分割點(diǎn))

修剪決策樹

剪枝原則

預(yù)剪枝與后剪枝

構(gòu)建決策樹的四個(gè)算法

C5.0、CHAID、CART、QUEST

各種算法的比較

如何選擇最優(yōu)分類模型?

案例商場(chǎng)用戶的典型特征提取

案例:客戶流失預(yù)警與客戶挽留

案例:識(shí)別拖欠銀行貨款者的特征,避免不良貨款

案例:識(shí)別電信詐騙者嘴臉,讓通信更安全

多分類決策樹

案例:不同套餐用戶的典型特征

決策樹模型的保存與應(yīng)用

5、 人工神經(jīng)網(wǎng)絡(luò)(ANN)

神經(jīng)網(wǎng)絡(luò)概述

神經(jīng)網(wǎng)絡(luò)基本原理

神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)

神經(jīng)網(wǎng)絡(luò)分類的幾何意義

神經(jīng)網(wǎng)絡(luò)的建立步驟

神經(jīng)網(wǎng)絡(luò)的關(guān)鍵問題

BP反向傳播網(wǎng)絡(luò)(MLP)

徑向基網(wǎng)絡(luò)(RBF)

案例評(píng)估銀行用戶拖欠貨款的概率

6、 判別分析(DA)

判別分析原理

判別分析種類

Fisher線性判別分析

案例:MBA學(xué)生錄取判別分析

案例:上市公司類別評(píng)估

7、 最近鄰分類(KNN)

KNN模型的基本原理

KNN分類的幾何意義

K近鄰的關(guān)鍵問題

8、 支持向量機(jī)(SVM)

SVM基本原理

線性可分問題:最大邊界超平面

線性不可分問題:特征空間的轉(zhuǎn)換

災(zāi)難與核函數(shù)

9、 貝葉斯分類(NBN)

貝葉斯分類原理

計(jì)算類別屬性的條件概率

估計(jì)連續(xù)屬性的條件概率

預(yù)測(cè)分類概率(計(jì)算概率)

拉普拉斯修正

案例評(píng)估銀行用戶拖欠貨款的概率

 

第十部分: 市場(chǎng)細(xì)分模型聚類模型篇

問題:我們的客戶有幾類?各類特征是什么?如何實(shí)現(xiàn)客戶細(xì)分,開發(fā)符合細(xì)分市場(chǎng)的新產(chǎn)品?如何提取客戶特征,從而對(duì)產(chǎn)品進(jìn)行市場(chǎng)定位?

1、 市場(chǎng)細(xì)分的常用方法

有指導(dǎo)細(xì)分

無指導(dǎo)細(xì)分

2、 聚類分析

如何更好的了解客戶群體和市場(chǎng)細(xì)分?

如何識(shí)別客戶群體特征?

如何確定客戶要分成多少適當(dāng)?shù)念悇e?

聚類方法原理介紹

聚類方法作用及其適用場(chǎng)景

聚類分析的種類

K均值聚類

層次聚類

兩步聚類

K均值聚類(快速聚類)

案例移動(dòng)三大品牌細(xì)分市場(chǎng)合適嗎?

演練:寶潔公司如何選擇新產(chǎn)品試銷區(qū)域?

演練如何自動(dòng)評(píng)選優(yōu)秀員工?

演練:中國(guó)各省份發(fā)達(dá)程度分析,讓數(shù)據(jù)自動(dòng)聚類

層次聚類(系統(tǒng)聚類):發(fā)現(xiàn)多個(gè)類別

R型聚類與Q型聚類的區(qū)別

案例:中移動(dòng)如何實(shí)現(xiàn)客戶細(xì)分及營(yíng)銷策略

演練中國(guó)省市經(jīng)濟(jì)發(fā)展情況分析(Q型聚類)

演練:裁判評(píng)分的標(biāo)準(zhǔn)衡量,避免“黑哨”(R型聚類)

兩步聚類

3、 客戶細(xì)分與PCA分析法

PCA主成分分析的原理

PCA分析法的適用場(chǎng)景

演練:利用PCA對(duì)汽車客戶群進(jìn)行細(xì)分

演練如何針對(duì)汽車客戶群設(shè)計(jì)汽車

第十一部分: 客戶價(jià)值評(píng)估RFM模型篇

營(yíng)銷問題:如何評(píng)估客戶的價(jià)值?不同的價(jià)值客戶有何區(qū)別對(duì)待?

1、 如何評(píng)價(jià)客戶生命周期的價(jià)值

貼現(xiàn)率與留存率

評(píng)估客戶的真實(shí)價(jià)值

使用雙向表衡量屬性敏感度

變化的邊際利潤(rùn)

案例評(píng)估營(yíng)銷行為的合理性

2、 RFM模型(客戶價(jià)值評(píng)估)

RFM模型,更深入了解你的客戶價(jià)值

RFM模型與市場(chǎng)策略

RFM模型與活躍度分析

演練:“雙11”淘寶商家如何選擇價(jià)值客戶進(jìn)行促銷

演練:結(jié)合響應(yīng)模型,宜家IKE實(shí)現(xiàn)最大化營(yíng)銷利潤(rùn)

案例:重購(gòu)用戶特征分析

第十二部分: 產(chǎn)品推薦算法推薦模型篇

問題:購(gòu)買A產(chǎn)品的顧客還常常要購(gòu)買其他什么產(chǎn)品?應(yīng)該給客戶推薦什么產(chǎn)品最有可能被接受?

1、 從搜索引擎到推薦引擎

2、 常用產(chǎn)品推薦模型及算法

3、 基于流行度的推薦

基于排行榜的推薦,適用于剛注冊(cè)的用戶

優(yōu)化思路:分群推薦

4、 基于內(nèi)容的推薦CBR

關(guān)鍵問題:如何計(jì)算物品的相似度

優(yōu)缺點(diǎn)

優(yōu)化:Rocchio算法、基于標(biāo)簽的推薦、基于興趣度的推薦

5、 基于用戶的推薦

關(guān)鍵問題:如何對(duì)用戶分類/計(jì)算用戶的相似度

算法:按屬性分類、RFM模型、PCA、聚類、按偏好分類、按地理位置

6、 協(xié)同過濾的推薦

基于用戶的協(xié)同過濾

基于物品的協(xié)同過濾

冷啟動(dòng)的問題

案例:計(jì)算用戶相似度、計(jì)算物品相似度

7、 基于關(guān)聯(lián)分析的推薦

如何制定套餐,實(shí)現(xiàn)交叉/捆綁銷售

案例:啤酒與尿布、颶風(fēng)與蛋撻

關(guān)聯(lián)分析模型原理Association

關(guān)聯(lián)規(guī)則的兩個(gè)關(guān)鍵參數(shù)

支持度

置信度

關(guān)聯(lián)分析的適用場(chǎng)景

案例購(gòu)物籃分析與產(chǎn)品捆綁銷售/布局優(yōu)化

案例:通信產(chǎn)品的交叉銷售與產(chǎn)品推薦

8、 基于分類模型的推薦

9、 其它推薦算法

LFM基于隱語義模型

按社交關(guān)系

基于時(shí)間上下文

10、 多推薦引擎的協(xié)同工作

 

第十三部分: 產(chǎn)品定價(jià)策略最優(yōu)定價(jià)篇

營(yíng)銷問題:產(chǎn)品如何實(shí)現(xiàn)最優(yōu)定價(jià)?套餐價(jià)格如何確定?采用哪種定價(jià)策略可達(dá)到利潤(rùn)最大化?

1、 常見的定價(jià)方法

2、 產(chǎn)品定價(jià)的理論依據(jù)

需求曲線與利潤(rùn)最大化

如何求解最優(yōu)定價(jià)

案例:產(chǎn)品最優(yōu)定價(jià)求解

3、 如何評(píng)估需求曲線

價(jià)格彈性

曲線方程(線性、乘冪)

4、 如何做產(chǎn)品組合定價(jià)

5、 如何做產(chǎn)品捆綁/套餐定價(jià)

最大收益定價(jià)(演進(jìn)規(guī)劃求解)

避免價(jià)格反轉(zhuǎn)的套餐定價(jià)

案例:電信公司的寬帶、IPTV、移動(dòng)電話套餐定價(jià)

6、 非線性定價(jià)原理

要理解支付意愿曲線

支付意愿曲線與需求曲線的異同

案例:雙重收費(fèi)如何定價(jià)(如會(huì)費(fèi)+按次計(jì)費(fèi))

7、 階梯定價(jià)策略

案例:電力公司如何做階梯定價(jià)

8、 數(shù)量折扣定價(jià)策略

案例:如何通過折扣來實(shí)現(xiàn)薄利多銷

9、 定價(jià)策略的評(píng)估與選擇

案例:零售公司如何選擇最優(yōu)定價(jià)策略

10、 航空公司的收益管理

收益管理介紹

如何確定機(jī)票預(yù)訂限制

如何確定機(jī)票超售數(shù)量

如何評(píng)估模型的收益

案例:FBN航空公司如何實(shí)現(xiàn)收益管理(預(yù)訂/超售)

第十四部分: 實(shí)戰(zhàn)篇(客戶行為預(yù)測(cè))

1、 電信業(yè)客戶流失預(yù)警與客戶挽留模型

2、 銀行欠貸風(fēng)險(xiǎn)預(yù)測(cè)模型

 

結(jié)束:課程總結(jié)問題答疑。

 
反對(duì) 0舉報(bào) 0 收藏 0
更多>與數(shù)說營(yíng)銷——大數(shù)據(jù)營(yíng)銷實(shí)戰(zhàn)培訓(xùn)相關(guān)內(nèi)訓(xùn)課
融創(chuàng)拓客營(yíng)銷及狼性銷售冠軍團(tuán)隊(duì)訓(xùn)練營(yíng) 房地產(chǎn)狼性拓客營(yíng)銷提升訓(xùn)練營(yíng) 房地產(chǎn)狼性冠軍團(tuán)隊(duì)+拓客營(yíng)銷+案場(chǎng)銷售+微信營(yíng)銷提升訓(xùn)練營(yíng) 引爆成交---房地產(chǎn)冠軍團(tuán)隊(duì)+狼性拓客+談判逼定 新經(jīng)濟(jì)環(huán)境下品牌營(yíng)銷與傳播 新零售門店業(yè)績(jī)倍增 激活 年度生意回顧與經(jīng)營(yíng)計(jì)劃
傅一航老師介紹>傅一航老師其它課程
大數(shù)據(jù)產(chǎn)業(yè)現(xiàn)狀及應(yīng)用創(chuàng)新 大數(shù)據(jù)挖掘工具:SPSS Modeler入門與提高 大數(shù)據(jù)挖掘工具: SPSS Statistics入門與提高 大數(shù)據(jù)建模與模型優(yōu)化實(shí)戰(zhàn)培訓(xùn) 金融行業(yè)風(fēng)險(xiǎn)預(yù)測(cè)模型實(shí)戰(zhàn) 數(shù)說營(yíng)銷——大數(shù)據(jù)營(yíng)銷實(shí)戰(zhàn)培訓(xùn) 大數(shù)據(jù)分析與挖掘綜合能力提升實(shí)戰(zhàn) 助力市場(chǎng)營(yíng)銷與服務(wù)的數(shù)據(jù)分析實(shí)戰(zhàn)
網(wǎng)站首頁(yè)  |  關(guān)于我們  |  聯(lián)系方式  |  誠(chéng)聘英才  |  網(wǎng)站聲明  |  隱私保障及免責(zé)聲明  |  網(wǎng)站地圖  |  排名推廣  |  廣告服務(wù)  |  積分換禮  |  網(wǎng)站留言  |  RSS訂閱  |  違規(guī)舉報(bào)  |  京ICP備11016574號(hào)-25